Case Studies in Soil Parameter Selections for Clay Foundations

Bob Cameron, B.A.Sc., M.A.Sc., P. Eng.
Principal Geotechnical Engineer, Syncrude Canada Ltd.
Fort McMurray, Alberta

Prepared with assistance from Glen Miller, E.I.T.
Introduction

- The methodology used for choosing design shear strength and pore pressure parameters for the six (6) clay types found at Syncrude’s Mildred Lake Mine site will be presented.

 1. PI Clay - Glacially deposited lacustrine (lake) clay more kaolinite clay, at or wet of optimum, slightly overconsolidated soft (65 to 75 kPa) clay, low plasticity
 2. Kc Clay (Kcc and Kca Clay – other Kc Clays not discussed) -- Deep Marine Smectitic Clay, heavily overconsolidated, well dry of plastic limit, high plasticity, stiff to hard (150 to 600 kPa) clay (clay shale)
 3. Marine Channel Clays -- Marine Clay near shore – kaolinite and degraded illite clay, some intercalated smectite, medium to medium-high plasticity, generally firm (75 to 150kPa) clays, usually dry of (to some close to) plastic limit
 4. Marine Near Shoreface Clays – Shallow marine clays of kaolinite and degraded illite, generally firm (75 kPa to 150 kPa) clays, dry of plastic limit to some close to plastic limit
 5. Estuarine Clays - at shore estuary clays mixed of kaolinite and illite, low plasticity, generally very stiff to hard clay (300 to 600 kPa) clays, dry of (with some layers just below) plastic limit
 6. Pond Muds/Basal Clays - Fluvial sands silt and muds – worse ones have degraded illite, medium to medium-high plasticity, generally stiff to hard clay (150 kPa to 600 kPa) clays, well dry of (with some layer just below) plastic limit

- This methodology has been under development for the past 29 years (and longer) during open-pit oil sand mining and design and construction of almost all combinations of in-pit/out-of-pit, sand/overburden, waste dumps/tailings dams.

- Remember you need to look at your own samples in the field and in core and test your own samples for index testing comparisons and shear strengths and include historical impacts.
Introduction

• This presentation will demonstrate that:

1. A given type of clay can have multiple pore water pressure design parameters, depending on surcharge loading and unloading;

2. The selection of one shear strength value and one pore water pressure value for a single clay type is not always adequate;

3. A given clay type can have high cross bedded shear strengths and a very low ‘sliding’ shear strengths along bedding planes and the use of ‘hard layers’, tested at multiple elevations is critical (as input/analyzed in slope stability programs);

4. Peak triaxial and peak and residual direct shear strength laboratory testing, total and effective stress considerations, and field pore pressure data can provide very useful, but often misleading or misinterpreted input parameters.
Contents

1. Site-Specific Geology and Depositional History
2. Site-Specific Excavation and Back-fill Geometries
3. Case Studies of Syncrude Mining Areas and Movement Year(s) Considered
 a. ‘S4 Dump’ – Out-of-Pit Overburden Dump, 1989 to 1992 mvmt’s
 b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s
 c. ‘MLSB’ – Out-of-Pit Sand-Constructed Tailings Dam, 1980 to 1992 mvmts
 d. ‘SWSS’ – Out-of-Pit Sand-Constructed Tailings Dam, 2009 to 2012 piezo response
 e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design
 f. ‘SWQ West Wall’ – Steep Final Pitwall with No Movement in 2006
 g. ‘Block Slide #22’ – Advancing Ore Pitwall with Movement in 1987
 h. ‘CC1 and CC2’ – Final Pitwall with Movement in 2003
 i. ‘G-Pit’ – Advancing O/B Pitwall with Movement in 2006
4. Retaining Wall/MSE Wall Construction Considerations for Marine Clay Layers in Oil Sand
 a. 5a. 2a/2c Conveyor Retaining Wall Re-Design, 1988
 b. 5b. MSE Wall with Shear Key for MLMR, 2011
5. Conclusions
2. Site-Specific Geology – High Level Geological History

Need to know geological history to understand foundation characteristics:

- **Depositional Environments**
 - Energy of deposition defines nature of sands and clays
- **Erosional Events**
 - Can change ‘bad actor’ clay location in strata when other units eroded away
- **Overconsolidation Effects**
 - Often increases cross-bedded strength of clays but not necessarily bedding/sliding strength
- **Glaciation Effects**
 - Erosion of units, some overconsolidation effects
 - Pre-shearing of uppermost units that were not eroded lowers their strength
Starting after deposition of Devonian Limestone:

1. **Large river** (fluvial environment) through area (was not a predecessor to the Athabasca river)
 - Deposits Pond Muds, Overbank Clays, Crevasse Splay

2. Sea level rises, transitioning from fluvial to estuarine environment, to near shoreface shallow marine,
 - Deposits Estuarine Sand, then Marine Sand and Marine Clay Layers

3. As sea level rises further, depositional environment becomes less energetic to deep marine environment
 - Deposits Clearwater Clay units

4. Mountain building occurs to the west:
 - Leads to continental uplift which exposes Clearwater Clays
 - Forces hydrocarbons into the Estuarine and Marine Sand units = Oil Sand

5. **Continental glaciation** forms during Pleistocene glaciation period:
 - Erodes some of the upper Clearwater Clay units and pre-shears underlying units
 - Pleistocene Clays and tills deposited during glacial regression
2. Site-Specific Geology – Pond Muds and Basal Clays

Schematic of Fluvial Depositional Environment
- Basal Zone between Devonian Limestone and Estuarine Oil Sand
- Pond Muds, Crevasse Splay, Overbank Clays
- Multiple events of differing sizes and locations
- Many erosional and depositional events

*Consideration for Dam Foundation
2. Site-Specific Geology - Estuarine and Marine Sand

Schematic of Estuarine and Marine Depositional Environments
- Estuarine and Marine Sand units deposited above Basal Clays
- Fining-upward sequence as sea levels rose and depositional energy decreased
- Sand with many truncating silt lenses, some semi-continuous clay layers in upper layers
- Marine Clay Layers (MCL’s) deposited in lower energy Near Shoreface Marine and Marine Channel environments
 - Problematic thin clay layers which have caused a number of pitwall failures
- Multiple events of differing sizes and locations
- Many erosional and depositional events during rising sea levels

Continually Fluctuating Sea Level Throughout Deposition

Site-Specific Geology – Estuarine and Marine Sand Depositional History
2. Site-Specific Geology – Clearwater Clays

Schematic of Deep Marine Depositional Environments
- Deep marine Clearwater Clays are deposited above Marine and Estuarine Sand units deposited
- Several well-defined massive clay units that require separate modelling
- Some variability of composition in uppermost units due to varying energy as sea levels began to lower during continental uplift (final deposition coarsens upwards)
- After uplift, some overconsolidation occurs from draining
2. Site-Specific Geology – Glacial Effects on Clearwater Clay and Deposition of Pleistocene Clay

- After Clearwater Clay deposition and before glaciation, the Athabasca region underwent continental uplift as a result of mountain building occurring to the west.
- This mountain building also resulted in oil and bitumen migrating through permeable basement rocks into the Estuarine and Marine Sand units.

- Continental glacier formation caused erosion of some of the upper Clearwater Clay units.
- Accumulation of glacier thickness (approx 3km thick) overconsolidated the Clearwater Clay unit.
- Glacial movements caused pre-shearing of the uppermost Clearwater Clay unit(s) under the glacier.

Glacial retreat created the depositional environment for the Pleistocene Clays and Tills and the Holocene Tills.
3. Site-Specific Excavation/ Back-Fill Geometries and Loading –
Variance of ru value with loading, unloading, and re-loading
3. Site-Specific Excavation/ Back-Fill Geometries and Loading – Shear Strength and Slip Surfaces

Peak strengths from lab testing may be too high or too low:
- Effective Stress may be too conservative but favored, as although Total Stress is numerically equivalent, lab testing is very sensitive to sample water content and saturation and so works best for low-strength clays at water contents well-above their plastic-limit
 - If not used correctly, this sensitivity can lead to unrealistic shear strength values being used in stability analyses and returning highly variable factors of safety

Cross-Bedded Strength values from Triaxial testing
Peak Strength and Residual Strength values for sliding layers from Direct Shear testing

Sliding Layers are input into the model to represent residual strength layers within the Clearwater Clay or Marine Clay Layers within the Marine Oil Sand.

Hard Layers need to be input into the stability analysis and are chosen below suspected problem units to force the failure to occur though/along the suspected problem unit. Turn on and off hard layers.

Build Geologic Model to include appropriate number of sliding layers and hard layers (that can be turned off or on at a time) AND then let program select back scarp location
Example of adding sliding layers, multiple ru's & changing hard-layer locations
4. Case Studies

a. ‘S4 Dump’ – Out-of-Pit Overburden Dump, 1989 to 1992 mvmt’s
b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s
c. ‘MLSB’ – Out-of-Pit Sand-Constructed Tailings Dam, 1980 to 1992 mvmt’s
d. ‘SWSS’ – Out-of-Pit Sand-Constructed Tailings Dam, 2009 to 2012 piezo response
e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design
f. ‘SWQ West Wall’ – Steep Final Pitwall with No Movement in 2006,
g. ‘Block Slide #22’ – Advancing Ore Pitwall with Movement in 1987
h. ‘CC1 and CC2’ – Final Pitwall with Movement in 2003
i. ‘G-Pit’ – Advancing O/B Pitwall with Movement/Slump in 2006

Dump Characteristics:
- 25Mm³ of overburden fill
- 38m high above original topography with avg. 8H:1V side slopes (flattened from original design of 3 & 4H:1V)

Foundation Characteristics:
- Pleistocene Clays present but not a concern
- Most of the original 30m of Clearwater eroded away by glaciation
- Remaining 1 to 5m of Kca Clay unit was glacially-affected to residual strength
- Residual strength tested in tension in direct shear machines

Movement Characteristics:
- Internal deformation with some cracking observed at crest and 2m of vertical displacement on west side
- The two main movement sides are north and west
- Many sheared SI's though dump did not completely fail
- Slides along top of first weakest layer in the Clearwater clay unit
- Constructed a shear key/toe berm on north toe to allow pitwall to be mined closer and used observational approach to continue dump construction

- ru jumped up (and SI’s moved) both when 1Mm³ additional fills added to crest of dump (5m thick) and when 1.5 to 2m of (reclamation) material was added close to area of previously high ru
 - SI's moved 50mm/year (from O/B fills) then slowed and stopped
 - SI's moved again at 10mm/year (from reclamation fills) which shows this area has a low factor of safety and Kca is near plastic strain curve

Hard to get FS=1.3 or 1.5 without having dump slopes at 20H:1V to 35H:1V (F.S. in the order of 1.07 to long-term 1.18 for 8H:1V)
4a. S4 Dump – Out-of-Pit Overburden Dump, 1989 to 1992 mvmt’s, Continued

Lower ru with higher fill height means shows PI Clays are draining under dump loading.

Higher ru with higher fill height means Kca Clay is responding to dump loading.

Original design: ru = 0.45 with observational method.

0.11/10year average drop but all piezometers went back up in 1989 when 1Mm³ was added and again in 1990/1991 when 2m of reclamation was added.

Ru’s @ 30 to 38m fill height??

Clearwater (Kca) Clay
- High Plastic Clay,
- LL=117%, PL=24%, 26.2%
- Heavily eroded - missing units above Kca
- Greatly overconsolidated
- Heavily pre-sheared
- Sliding Design: C'=0, Φ'=8°
- Measured r_u=0.4 to 0.83

Pleistocene (Pl) Clay
- Low to medium plastic clay,
- LL=38.5%, PL=20.3%, 16.6%
- Slightly over consolidated
- Optimum moisture content or wet-of-optimum moisture content
- Cross-bedded and Sliding Design: C'=0, Φ'=20°
- Measured r_u=0.05 to 0.4

Pleistocene (Pl) Clay

- **Liquid Limit (%)**: 37.2 - 45.5
- **Plastic Limit (%)**: 14.4 - 20
- **Plasticity Index (%)**: 11 - 26
- **Plasticity**: LO-HI

Clearwater (Kca) Clay

- **Liquid Limit (%)**: 50.0 - 100
- **Plastic Limit (%)**: 15.4 - 33.7
- **Plasticity Index (%)**: 33 - 134
- **Plasticity**: Hi

Particle Size Distribution

<table>
<thead>
<tr>
<th>Test</th>
<th>n</th>
<th>Range</th>
<th>Avg</th>
<th>Median</th>
<th>Std Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Moisture Content (%)</td>
<td>85</td>
<td>12.5 - 43.2</td>
<td>26.2</td>
<td>26.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Liquid Limit (%)</td>
<td>85</td>
<td>50.0 - 100</td>
<td>117.2</td>
<td>115.4</td>
<td>25.4</td>
</tr>
<tr>
<td>Plastic Limit (%)</td>
<td>66</td>
<td>15.4 - 33.7</td>
<td>24</td>
<td>23.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Plasticity Index (%)</td>
<td>66</td>
<td>33 - 134</td>
<td>82.7</td>
<td>84</td>
<td>23.5</td>
</tr>
<tr>
<td>Plasticity</td>
<td>66</td>
<td>Hi-Hi</td>
<td>Hi</td>
<td>Hi</td>
<td></td>
</tr>
<tr>
<td>% Gravel</td>
<td>66</td>
<td>0 - 5.2</td>
<td>0.1</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>% Sand</td>
<td>66</td>
<td>2.1 - 45.2</td>
<td>3.2</td>
<td>3.7</td>
<td>7</td>
</tr>
<tr>
<td>% Silt</td>
<td>66</td>
<td>24.7 - 81.7</td>
<td>38.8</td>
<td>38.8</td>
<td>10.1</td>
</tr>
<tr>
<td>% Clay</td>
<td>66</td>
<td>15.4 - 74.6</td>
<td>56.7</td>
<td>59.2</td>
<td>10.8</td>
</tr>
<tr>
<td>Activity</td>
<td>66</td>
<td>1.6 - 2.13</td>
<td>1.86</td>
<td>1.86</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Field results show no SI movement in PI Clay unit with dump loading. This clay is the one clay sometimes designed in total stress using its undrained shear strength of 65 to 75 kPa as it is closer to a slightly overconsolidated clay A-81-925T, LL=32%, PL=16%, NMC=24.7 PN82-1001, LL=38%, PL=16%, NMC=17.

C.2d.6 In-situ Kca Direct Shear Testing
(From: Cameron, April 1992)

<table>
<thead>
<tr>
<th>NW/MCM</th>
<th>Range</th>
<th>Avg.</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Gravel</td>
<td>0-3.5</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Plasticity Index (%)</td>
<td>39.1-119</td>
<td>65.7</td>
<td>80.0</td>
</tr>
<tr>
<td>Plastic Limit (%)</td>
<td>19.4-27.9</td>
<td>22.8</td>
<td>22.3</td>
</tr>
<tr>
<td>Liquid Limit (%)</td>
<td>58.7-145.3</td>
<td>108.9</td>
<td>101.1</td>
</tr>
<tr>
<td>Atterberg Limits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Moisture Content (%)</td>
<td>12.5-40.8</td>
<td>25.4</td>
<td>21.8</td>
</tr>
</tbody>
</table>

1980 design was $C'_r=0$ kPa, $\Phi'_r=16^\circ$ with use of ‘observational approach’

There is a range in acquired data for residual strengths

- Sample wetting method is important: wet rags and high humidity are better than water bath method, especially when samples are glacially pre-sheared and high plastic clays, when using water:
 - prefer pore fluid next best is tap water ---- distilled water bad for high LL clays
- Do not pre-shear sample using piano wire, glass, or similar
- Test/record samples in tension and not in compression
 - Cycling tension and compression to achieve residual strength is ok, just do not average results as compression will erroneously return higher strengths

Highly sheared sample's peak strength tested at 13° BUT area was known to have moved a lot. Forced shear plane in direct shear peak test cannot properly set plane. Lesson: Use 8° (lab + minor field effects)

1991 Design Sliding Shear Strength: $\Phi'_\text{design}=8^\circ$ ($7^\circ+1^\circ$)
$LL=108.9\%$, $PL=22.8\%$, $NMC=25.4\%$

1981 Design Sliding Shear Strength: $\Phi'_\text{design}=8^\circ$ ($7^\circ+1^\circ$)
$LL=108.9\%$, $PL=22.8\%$, $NMC=25.4\%$

C.2d.2 In Situ Kc Clearwater Clays Triaxial Tests

Cross-Bedded Design Strength:

\[C' = 25 \text{kPa}, \ \phi' = 20^\circ \]

- Avoid choosing a strength from a single point residual strength values and drawing through zero (should have a minimum of six samples at various stresses)
- Single point values through zero intercepts do not reflect the actual shear surface

Design is $\Phi' = 8^\circ$ ($7^\circ + 1^\circ$ for field effects)

Legend:
- Geacon 1978
- Thurber 1979/1981
- EBA 1986
- EBA 1984
- Hardy 1978
- EBA 1976

- Lower- and upper-bounding this type of data is bad practice
- Even averaging this information requires LL% consideration see added symbol
Back analysis used $\Phi' = 8^\circ$ (7° lab residual strength + 1° for field effects) and either ρ at centroid = 0.7 or multiple ρ’s under slope and got same $FS = 1.0$ for failure/movement.

Plan View showing Slope Inclinometer (SI) and Pneumatic Piezometer (PN) locations – schematized on section

- No recorded movement in Pl Clay, mvmt in Kca
- Centroid of the loaded area above sliding plane ρ_{avg} loaded = 0.7

<table>
<thead>
<tr>
<th>Section Line</th>
<th>Maximum Elevation of Crest of Dump (m)</th>
<th>Original Ground Elevation below the Crest of Dump (m)</th>
<th>Kca top elevation & depth at top of dump (m)</th>
<th>Maximum fill thickness in Dump (m)</th>
<th>Crest to Toe Height (m)</th>
<th>Overall Slope from Dump Crest to Dump toe (m)</th>
<th>Steepest Intermediate Slope > in Height (m)</th>
<th>Total Recorded Movement (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>335m</td>
<td>310m</td>
<td>303.5m</td>
<td>303.5m</td>
<td>20 to 17m</td>
<td>3.41:1</td>
<td>4.1:1</td>
<td>>88mm</td>
</tr>
<tr>
<td>West</td>
<td>335m</td>
<td>310m</td>
<td>303.5m</td>
<td>303.5m</td>
<td>10 to 17m</td>
<td>6.2:1</td>
<td>4.1:1</td>
<td>>168mm</td>
</tr>
<tr>
<td>South</td>
<td>335m</td>
<td>310m</td>
<td>303.5m</td>
<td>303.5m</td>
<td>10 to 17m</td>
<td>7.4:1</td>
<td>6.6:1</td>
<td>>222mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back analysis used $\Phi' = 8^\circ$ (7° lab residual strength + 1° for field effects) and either ρ at centroid = 0.7 or multiple ρ’s under slope and got same $FS = 1.0$ for failure/movement.
4a. S4 Dump – Out-of-Pit
Overburden Dump, 1989 to 1992 mvmt’s

Measured movement:
Station Locations show decreasing rate of movement
- 50mm/yr for 2yrs to;
- 10mm/yr for 2yrs to;
- 3mm/yr for 2yrs to;
- less than error bands

- **Lessons Learned:**

1. High plastic Kc Clay at residual strength is worse than PI Clay – water content of both are close to optimum/ Plastic Limit

2. **Ru increases for Kca** with increasing fill height (0.45 under dump toe, up to 0.793) – jumps when over 40m height. **Ru decreased for PI Clay** with increasing fill height at S4 Dump

3. Ru for Kca at centroid of dump gives same answer, but still need ru=0.45 at toe of dump and ru=0.0 by pitwall (minimum 3 different ru’s along slip plane, but using 5 or 6 may be better)

4. ru jumped up (and SI’s moved) both when 1Mm3 additional fills added to crest of dump (5m thick) and when 1.5 to 2m of (reclamation) material was added close to area of previously high ru
 - SI’s moved 50mm/year (from O/B fills) then slowed and stopped
 - SI’s moved again at 10mm/year (from reclamation fills) which shows this area has a low factor of safety and Kca is near plastic strain curve
 - On the north slope SI movement was recorded at 2mm/day for 14 days but was relatively local and buttress was installed

5. **Φ’design = 8°** (and back analyzed strength), lab residual strength testing tested in tension with tap water (not distilled water), tested at lab Φ’r=7° and added +1° for field effects giving Φ’= 8°
 - @ 4°, all slopes would fail,

6. Slope deformation sheared many SI’s – dump never completely failed, but caused construction to stop numerous times.
 - Stopping construction allows dump to ‘settle down’ allowing pore pressures to dissipate
 - Small ru changes send you along in plastic deformation at low FS – must allow time for dissipation/depressurization to occur
 - If construction must continue, can use flatter slopes with toe berms
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s

Dump Characteristics:
- 117Mm3 of unengineered overburden fill
- 40m high above original topography with avg. 15H:1V side slopes to reduce amount of instrumentation required

Foundation Characteristics:
- Pleistocene Clays present but not a concern
- Approximately 30m thick Kc Clay unit underlies Pl unit
- Uppermost Kcc unit was glacially pre-sheared

Movement Characteristics:
- Internal deformation with no cracking or vertical displacement observed in area where overall dump slope ranged from 9H:1V to 13.4H:1V
- Movement area was on SE slope of dump (not towards pitwall)
- Slides along top of first weakest layer in the Clearwater clay unit (Kcc)
- Flattened slopes and delayed construction temporarily and used observational approach to continue dump construction
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s, con’t

Vibrating Wire Piezometer data for In-situ Pl Clay under W1 dump fills

Note: r_u in Pl clay staying the same or slightly increasing at W1 Dump unlike S4 Dump.

Loaded Design $r_u = 0.6

Unloaded Design $r_u = 0.45

W1 Dump – Loaded ru’s in PI Clay
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s, con’t

- Multiple loaded design ru’s can be applied to a range of fill thicknesses 5 to 40m or one average ru for the entire slope centroid after confirming fill height at centroid of loaded area.
- This is due to the relationship between the failure mass geometry and the dump geometry centroids (future FLAC analysis need individual ru’s for each height).
- These ru’s generally increase with fill height small plots not showing it clearly.

S4 Dump had Kca only (no Kcc or Kcb) underlying it as the upper Kc units were eroded away from that area.

W1 Dump – Loaded ru’s in Kcc Clay
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s, con’t

- Kca deep under foundation (near 40m below top of original ground with thick, weaker Kcc units above) of W1 Dump $r_u=0.25$ vs Kca under S4 Dump (approx. 6 to 17m below top of original ground for west section with all other Kc Clay units above eroded away) $r_u = 0.7$
 - no or less glacial pre-shearing or glacial unloading as Kca units is nearly 40m below surface in this area
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s, con’t

Clearwater (Kcc) Clay

- High Plastic Clay LL=85.1%, PL=24.2% NMC=18.1
- Greatly overconsolidated
- Heavily pre-sheared
- Measured $C'_r=0$, $\Phi'_r=8^\circ$, Measured $r_u=0.45$ to 0.83
- Cross-bedded design: $C'=25$kPa, $\Phi'=20^\circ$, $r_u=0.7$
- Sliding design: $C'=0$kPa, $\Phi'=8^\circ$, $r_u=0.7$

Summary of Test Results of Kcc Unit within W1 area

<table>
<thead>
<tr>
<th>Test</th>
<th>n</th>
<th>Range</th>
<th>Average</th>
<th>Median</th>
<th>Std Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Moisture Content (%)</td>
<td>70</td>
<td>10.8-28.8</td>
<td>18.1</td>
<td>17.3</td>
<td>4.11</td>
</tr>
<tr>
<td>Liquid Limit (%)</td>
<td>70</td>
<td>35.1-174.7</td>
<td>85.1</td>
<td>71.5</td>
<td>36.80</td>
</tr>
<tr>
<td>Plastic Limit (%)</td>
<td>70</td>
<td>17.1-36.9</td>
<td>24.2</td>
<td>23.3</td>
<td>4.35</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>70</td>
<td>16-141</td>
<td>61</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>Particle Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Gravel</td>
<td>63</td>
<td>0.0-0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>% Sand</td>
<td>63</td>
<td>0.0-23.8</td>
<td>1.0</td>
<td>0.3</td>
<td>3.02</td>
</tr>
<tr>
<td>% Silt</td>
<td>63</td>
<td>22.4-81.0</td>
<td>54.1</td>
<td>55.7</td>
<td>13.87</td>
</tr>
<tr>
<td>% Clay</td>
<td>63</td>
<td>18.7-73.3</td>
<td>44.9</td>
<td>42.8</td>
<td>13.19</td>
</tr>
<tr>
<td>Activity</td>
<td>63</td>
<td>0.60-2.76</td>
<td>1.27</td>
<td>1.18</td>
<td>0.44</td>
</tr>
</tbody>
</table>
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s, con’t

W1 Dump
Ru vs Time VP020027
N49072.50, E45570.67, 351.425m Elevation

Last reading on: Mar 11, 2012

Overall Design r_u 0.7 for areas with Dump load

- Slope Trimming, Reclamation Material & Muskeg Placement between Nov 2008 and Mar 2009

- Last Construction activity March 2010
- No const. activity

Date

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0 10-Oct-06 14-Jan-04 22-Feb-08 6-Jul-09 18-Nov-10 1-Apr-12 14-Aug-13

W1 Dump – Loaded ru’s in Kcc Clay
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvmt’s, con’t

Controlled dump movement by stopping construction in 2007 for 2 months, then stepped each bench back flatter than previous

Must focus (when no pit wall geometry involved) near the top of the unit, where break-out and less cross bedded, where glacially-affected weak zones
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 mvt’s, con’t

Combined Incremental Displacement in the "A " Direction
SI020027 & SI070036R & SI080069R
49072.499N, 45570.665E, 351.425m

Main slip plane in Kcc and direction of movement

Movement at 326 elevation from Sept. 2008 -May. 2011

No change

Down Slope Movement

Used to get shear stress modulus

Sketch of Cumulative Down-slope Movement
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 movement, cont'

Movement at Depth vs Time includes Combined Movement from 3 consecutively installed SI's & solid red line is the Combination of Movement in the same zone
SI 020027 & 070036R & 080069R (351.425m Ground el.)

- 2008 – 2010 Overall Movement of 76mm was recorded as dump construction & reclamation activities continued (33mm/year)
- 2010 – 2011 Overall Movement of 13mm/year was recorded with no dump construction & reclamation activities

Approximately 178mm of total dump movement up to March 2013 (170mm shown up to April, 2012)

- @ 1.0mm/day consider stopping placement
- Velocity <2mm/day
- @ 2.0mm/day must stop placement

"Similar to S4 Dump which accelerated to 9mm/yr. & took 3 years to slow back down to < 3mm/yr."

2011 – 2012 Overall Movement of 4mm" is recorded with no dump construction & no reclamation activities (4mm/year)
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, 2005 to 2009 movements, con’t

- D/V deformation table shows deformation observed
- With acceptable movements defining the design, factor of safety could be 1.1 still
- FS=1.1 could lead to cracking and loss of serviceability
- FS 1.0 to 1.18 may also give movements above a given risk tolerance
- Modified from Ed McRoberts plot of serviceability limits for deformations

<table>
<thead>
<tr>
<th>Date</th>
<th>Movement</th>
<th>Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 03/05 to Dec 05/07</td>
<td>Before any Buttressing</td>
<td>45mm</td>
</tr>
<tr>
<td>Dec 17/07: After Placing the 347, 352, 357 Lifts</td>
<td>61.8mm</td>
<td>19.4m</td>
</tr>
<tr>
<td>Feb 29/08: After Placing the 364 Lift</td>
<td>70.5mm</td>
<td>26.4m</td>
</tr>
<tr>
<td>Mar 07/08: After Placing the 367 Lift</td>
<td>84.4mm</td>
<td>29.4m</td>
</tr>
<tr>
<td>Nov 17/08: After Placing the 381 Lift</td>
<td>111.5mm</td>
<td>43.4m</td>
</tr>
<tr>
<td>Feb 23/09: After Placing Reclamation material</td>
<td>124.5mm</td>
<td>44.9m</td>
</tr>
</tbody>
</table>
4b. ‘W1 Dump’ – Out-of-Pit Overburden Dump, , 2005 to 2009 mvmt’s, con’t

- **Lessons Learned:**

1. Dump never failed
2. During dump movement, more fill can be added, but must generally delay placement, then flatten overall dump slope as elevation increases (or construct toe berm, if area is available)
3. When factor of safety against slope instability is low, adding even minor additional loading can lead to plastic strain with an ru increase and could lead to failure sooner
4. Residual sliding shear strength along the foundation Kcc Clay unit is 8° - which is similar to S4 Dump but ru values measure:
 - W1 Dump \(K_{cc} \) (similar condition as S4 Dump \(K_{ca} \)) ru=0.45 to 0.83
 - W1 Dump Kca ru=0.25
 - S4 Dump Kca ru=0.4 to 0.793
 - S4 Dump PI clay ru decreased with fill height -drainage occurred and/or no response to loading
 - W1 Dump PI clay ru stayed the same or slightly increased with fill height
5. @ 4° all slopes would fail, not all clay layers are 8° some can be 10 or 13° but this is based on lower Liquid Limits and lower clay contents.
4c. ‘MLSB’ – Out-of-Pit Sand-Constructed Tailings Dam, 1980 to 1992 mvmt’s

Dam Characteristics:
- 750Mm3 of engineered and unengineered sand
- 40m high above original topography with avg. 9H:1V side slopes (max. 4H:1V, min. 20H:1V)

Foundation Characteristics (for section considered):
- Pleistocene Clays present and not an issue
- Pg Tills and Kc Clay Tills present at/near surface
- Most of the original 30m of Clearwater eroded away by glaciation – similar to S4 Dump
- Remaining 1 to 5m of Kca Clay unit was glacially-affected to residual strength

Foundation Loading Characteristics:
- During early design stages, field strength of Kca was chosen at \(\Phi' = 12° \) and \(ru = 0.3 \)
- From more/better lab testing, design strength was reduced to \(\Phi' = 8° \)
- From increased loading of instrumented areas, design ru value was increased to 0.4, then 0.55, then 0.62, then finally to ru=0.7 to 0.75, but not over whole length of slip surface
- An overburden toe berm was added to increase factor of safety as dam went higher
- If \(\Phi' = 4° \), slope failures would exist

MLSB – Analyzed Section and Loaded Kca ru Response
4c. ‘MLSB’ – Out-of-Pit Sand-Constructed Tailings Dam, 1980 to 1992 mvmt’s con’t

- Three SI’s stations showed movement jumps of 50 to 130mm, 190 to 420mm, and 65 to 180mm
 - This movement event resulted in the construction of the overburden toe berm to flatten the overall dam slope to 20H:1V
 - Multiple SI’s may be required at a given movement location (station) if slope movements exceed SI tube shear strength
- Even if SI’s do not have the same total movement, if all three move 10mm together when you build upper lifts, that is trouble
- Generally safe from failure if SI at toe does not show similar movements to those mid-slope, as this is indicative of internal deformation
4c. ‘MLSB’ – Out-of-Pit Sand-Constructed Tailings Dam, 1980 to 1992 mvmt’s con’t

- Lessons Learned:

1. Kca is pre-sheared in this area and has residual strength at 8°
 - Initial design strengths used ranged from 12° to 16° with use of an observational method for construction
 - At 4°, all slopes would have fallen down

2. From increased loading of instrumented areas, design ru value was increased to 0.4, then 0.55, then 0.62, then finally to ru=0.7 to 0.75, but not over whole length of slip surface
 - Kca ru increases with fill height

3. As Dam height increased and more accurate information was obtained for loading conditions, design slopes were shallowed:
 - 2.5 to 6.8H:1V to 5.5 to 9H:1V to 20H:1V

4. 420mm of movement could occur without failure

5. When SI’s at the toe, middle, and upper slopes are moving at the same velocity, means large-scale failure is imminent – Toe berm can stop this

6. Toe berms need to be relatively steep at lower heights and have benches to provide maximum toe weight/support – better to have local instabilities in the toe berm than in the containment structure/dam

7. At low factor of safety, plastic strain characteristics were observed – this required caution in the form of:
 - Closer instrumentation monitoring
 - Flattening overall dam slopes
 - Use toe berm to take advantage of ru profiles
4d. ‘SWSS’ – Out-of-Pit Sand-Constructed Tailings Dam, 2009 to 2012 piezo response

Dam Characteristics:
- 750Mm3 of engineered and unengineered sand
- 40 to 50m high above original topography with avg. 20H:1V side slopes

Foundation Characteristics (for section considered):
- Pleistocene Clays partially removed from a borrow pit in the section area
- K_{cg} unit present near surface
- K_{cg} in this area has high clay and moisture content and is glacially pre-sheared

Non-Movement Loading Characteristics:
- VP tip in K_{cg} Clay unit shows that the clay goes into suction as a result of unloading
- After the first 3m sand lift, rapid increase of K_{cg} pore pressure occurred
 - Bbar reading >1
 - ru reading of <0.5
- Factor of Safety against slope instability was verified to be acceptable and construction continued, with close monitoring
- Pore water pressure appeared to stabilize once construction was completed
4d. ‘SWSS’ – Out-of-Pit Sand-Constructed Tailings Dam, 2009 to 2012 piezo response con’t

- Due to the saturated nature of the PI and Kcg clay units, ru drops are observed in the initial stage of their readings, likely as a result of the near-by excavation.
- The Kcg shows ru < 0 which means the unit is in suction.
- Once the first 3m sand lift is placed, both PI and Kcg pore water pressures increase dramatically:
 - In the Kcg unit, the ru jumps from approximately ru = -0.2 to ru = 0.6
 - Since Bbar only measures the change in pore water pressure, the Bbar reading was over 1.
4d. ‘SWSS’ – Out-of-Pit Sand-Constructed Tailings Dam, 2009 to 2012 piezo response con’t

Lessons Learned:

1. Close-by excavation caused pore water pressure to drop in elevation by the approximate thickness of soil removed. Pore water pressure came right back when sand was placed above – in terms of ru, not an issue for stability and no SI movement as design was for 0.7 with additional FS
 - Knowledge of geological history, as well as recent loading/unloading history is important for selecting design parameters
 - Actually is a high real Bbar so must watch anyways but not as scary when you know a lot of the jump was a result of the previous excavation (this also occurs during excavation for shear keys)

2. ru is what gives pore water pressure for stability analysis

3. Instrumentation readings need proper interpretation and the use of ru over Bbar for non-sand fills/in situ is recommended for this.
 - Piezometer plots need to include tip elevation and ground elevation on the same plot so one can properly interpret the results.
4e. ‘Hwy 63 Berm’— In-Pit Overburden Tailings Dam, 1992 to 1994 design

Dam Characteristics:
- 42Mm3 of engineered and 40Mm3 uncontrolled O/B fill
- 65m high above mined-out pit floor with avg. 7H:1V side slopes

Foundation Characteristics:
- All overburden and ore removed from Dam foundation
- Undulating Pond Muds, Basal Clays, and Crevasse Splay exist under Dam, ranging from 10 to 20m thick
- Pond Mud was observed to be pre-sheared, both from core samples and from visual observation of pit floor

Non-Movement Loading Characteristics:
- Concern existed for fluctuating ru value due to water ingress into the porous basal units from the infilling of tailings fluids on both sides of the dam
- Design strength (residual) of Pond Mud was originally thought to be 6°
 - Questioned since Kca, a higher-plastic clay, is Φ = 8°
- Further sampling/testing of these basal units returned higher but still variable strengths (Φ = 9° to 11°) that appeared to based on the samples’ clay content
- Different design strengths could be assigned to certain areas of the basal units which, because of a good understanding of the geological depositional environments, were able to have field effects factored in

Important to note: 9° strength is 50% more resistant to movement than 6° and considering a dam stability analysis, 9° can support a FS=1.3 for a short term, where 6° at FS=1.3 would fail.
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

Schematic of Fluvial Depositional Environment (Repeated)

- Basal Zone between Devonian Limestone and Estuarine Oil Sand
- Pond Muds, Crevasse Splay, Overbank Clays
- Multiple events of differing sizes and locations
- Many erosional and depositional events

*Consideration for Dam Foundation
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

Figure 4.11.3 Pond Muds (F1)

Figure 4.12 PLASTICITY CHART For Pond Muds (F63, F61, F1)
Table 4.1: Foundation In situ Soil Design Values

<table>
<thead>
<tr>
<th>Soil Unit</th>
<th>Average Clay Content of Tested Sample (%)</th>
<th>Peak Direct Shear Strength (c_p, ϕ_p)</th>
<th>Lab Residual Direct Shear Strength (c_r, ϕ_r)</th>
<th>Design Clay Content (%)</th>
<th>Design Shear Strength Across Bedding (c', ϕ')</th>
<th>Design Shear Strength Along Bedding (c'', ϕ'')</th>
<th>Field Effects Required For Design Strength from lab Residual (c'', ϕ'')</th>
<th>Average f_u Measured in the Field</th>
<th>Design f_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estuarine Oilsands</td>
<td>N/A</td>
<td>30 kPa, 54°</td>
<td>34°</td>
<td>N/A</td>
<td>50°</td>
<td>50°</td>
<td>N/A</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>Pond Muds (f01, f03, f1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70.</td>
<td>20 kPa; 15°</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>26.6°</td>
<td>16°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>35 kPa; 20.4°</td>
<td>10°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>35 kPa; 13°</td>
<td>6.4°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>11°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td>Overbank Mud (f3, f70, f71, f77)</td>
<td></td>
<td>Not enough data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>35 kPa; 20.4°</td>
<td>12.7 kPa; 17°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td>Crevasse Splay (F2)</td>
<td>67</td>
<td>13.8°</td>
<td>11.9°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
<tr>
<td>Watersands</td>
<td>N/A</td>
<td>33.7°</td>
<td>29.8°</td>
<td>N/A</td>
<td>32°</td>
<td>N/A</td>
<td>N/A</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>Palesol</td>
<td>34</td>
<td>100 kPa; 20°</td>
<td>17.7° or 12.5°</td>
<td>40</td>
<td>N/A</td>
<td>9°</td>
<td>0.5° to 1°</td>
<td>None</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>15.2°</td>
<td>7.5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>0.2 to 0.3</td>
</tr>
</tbody>
</table>

Notes:
1. From combined basal clay Residual Shear Strength Plot (Figure 4.2)
2. Triaxial Tests and direct shear
3. Refer to Chapter 21.0 for field determined pore pressure ratios (f_u)
N/A = not applicable
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

- Pond Muds Lab Testing – **Low Clay Content**

Figure 4.6 Residual Shear Strength of Pond Mud (161, 163, f1, unknown) with Less Than 43.9% Clay Content

*Average Parameters for direct shear data points:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL</td>
<td>35</td>
</tr>
<tr>
<td>PL</td>
<td>195</td>
</tr>
<tr>
<td>N</td>
<td>14.5</td>
</tr>
<tr>
<td>Silt % avg.</td>
<td>59</td>
</tr>
<tr>
<td>Clay % avg.</td>
<td>33</td>
</tr>
<tr>
<td>N = 10 points</td>
<td></td>
</tr>
</tbody>
</table>

*Legend:

- Unknown Pond Mud Failure
- Pond Mud Failure
- Pond Mud Failure

Peak and Residual Strengths

Tested at Clay % average of 33%

- LL=35%, PL=16%, NMC=14.5%

$C'_p = 0 \text{kPa}, \phi' = 26.6^\circ$

$C'_r = 0 \text{kPa}, \phi' = 16^\circ$
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

- Pond Muds Lab Testing – Medium Clay Content

![Figure 4.5](image)

Figure 4.5 Residual Shear Strength of Pond Mud (161.1, 163.1, f1, unknown) with 43.9 to 59.9% Clay Content

- **C’=35.1kPa, Φ’=20.4°**
- **C’=0kPa, Φ’=10°**

Peak and Residual Strengths tested at Clay % average of 50% LL=46%, PL=19%, NMC=13.5%
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

• Pond Muds Lab Testing – **High Clay Content**

Figure 4.4 Residual Shear Strength of Pond Mud (f61, f63, f1, unknown) with 60 to 83% Clay Content

<table>
<thead>
<tr>
<th>Average Parameters for direct shear data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL_avg = 67</td>
</tr>
<tr>
<td>PL_avg = 22</td>
</tr>
<tr>
<td>PI_range = 44</td>
</tr>
<tr>
<td>N_MC_avg = 17.2</td>
</tr>
<tr>
<td>Sand %_avg = 1</td>
</tr>
<tr>
<td>Silt %_avg = 24</td>
</tr>
<tr>
<td>Clay %_avg = 75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legend:</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1 +</td>
</tr>
<tr>
<td>f61 X</td>
</tr>
<tr>
<td>f63 x</td>
</tr>
</tbody>
</table>

C’p = 35.2kPa, Φ’ = 13°

C’r = 0kPa, Φ’ = 6.4°

Peak and Residual Strengths tested at Clay % average of 75%
LL=67%, PL=23%, NMC=17.2%

Direct Shear - All SCL, Hardy, Thuber, EBA, HBT Agra data - April 23, 1994 - B. Cameron

LL = Liquid Limit, PL = Plastic Limit, PI = Plasticity Index, N.M.C. = Natural Moisture Content, N = Sample Number
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

Figure 4.2 Combined Direct Shear Strength Average Basal Clay Residual Shear Strength Plot for Pond Mud (f61, f63, f71, unknown), Overbank Mud (f3, f70, f71, f77), and Crevasse Splay (f2)

- Pond Mud (60-83% Clay Content)
- Pond Mud (43.9 to 59.9% Clay Content)
- Pond Mud (Less than 43.9% Clay Content)
- Overbank Mud (20 to 50% Clay Content)
- Overbank Mud (Less than 20% Clay Content)

Pre-shearing exists in the field – considered a result of high Ko and glacial unloading and so Pond Mud is weaker than Limestone and Oil Sand on each side.

Important to understand range of material clay content along slip surface considered - can vary significantly, especially if failure plane is 1000m long.
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

Figure 4.13 Elevation vs. Clay Content for Pond Muds

- Low Clay Content: <43.9%
- Medium Clay Content: 43.9% to 59.9%
- High Clay Content: >60%

248 to 250m el - Approximate base elevation of Hwy 63 Berm

@ 33% Clay, $\phi_r = 16^\circ$

@ 50% Clay, $\phi_r = 10^\circ$

@ 75% Clay, $\phi_r = 6.4^\circ$

$N = 93$
Average = 52.7
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

Φ’ = 9° Selected Field Design Strength for Hwy 63 Berm from:
1. Average Strength
2. Lab strength of 60% Clay Content (6.9°) + 2.1° Field Effects = 9° Design Strength

For slip surfaces with average clay contents along the entire slip surface, the following is obtained for a 9° field design strength:

<table>
<thead>
<tr>
<th>Average Clay Content</th>
<th>Lab Strength</th>
<th>Field Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
<td>6.4°</td>
<td>2.6°</td>
</tr>
<tr>
<td>70%</td>
<td>6.9°</td>
<td>2.1°</td>
</tr>
<tr>
<td>65%</td>
<td>7.5°</td>
<td>1.5°</td>
</tr>
<tr>
<td>60%</td>
<td>8°</td>
<td>none</td>
</tr>
<tr>
<td>55%</td>
<td>9°</td>
<td>none</td>
</tr>
<tr>
<td>50%</td>
<td>10°</td>
<td>none</td>
</tr>
</tbody>
</table>

- +1°, 2°, or 3° for additional equivalent strengths considered to occur in the field:
 - Discontinuous distributions of clay and water content along slip surface
 - Entire slip surface may not be at residual strength
 - Slip surface has to shear through undulating/truncated strong/weak layers
 - Only some pre-shearing observed is sub-horizontal, majority of pre-shearing is at high angles
 - Horizontal pre-existing shears are unlikely to have clay minerals aligned in the same direction of shearing

Low Clay Content: <43.9%
Medium Clay Content: 43.9% to 59.9%
High Clay Content: >60%
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

Figure 4.15 Plot of Elevation vs. Natural Moisture Content minus Plastic Limit (point pairs only)

Mine pit floor approx. 250m el
Surface 2m removed to approx. 248m el

How does Pond Mud stay at ru=0.2?
• Deep within strata so isolated from glacial drag forces
• Popped by K_o – Pre-sheared
• By excavating then backfilling the equivalent loading –original loading conditions are recreated
• Basal formation acted as a zone when unloaded, loaded, then flooded

Similar to Kc clay that goes to 0.7 ru once 40m of fill is constructed above
4e. ‘Hwy 63 Berm’ – In-Pit Overburden Tailings Dam, 1992 to 1994 design con’t

Lessons Learned:

1. Pond mud ru is not sensitive to fill height up to original ground elevation and relates to:
 - Natural moisture content below plastic limit
 - Deep geological environment after deposition and downward hydraulic gradient so pwp low
 - Overconsolidation of deep fills
 - All in situ basal units (Pond Muds, Basal Clays, Watersands, Crevasse Splay) and in situ reject Oil Sand acted with the same ru
 - Fluid loading led to minor ru increase but same fluid also buttressed the Dam

2. Pond Muds were unloaded during ore mining, reloaded during Dam construction
 - Excavated 63m of in situ ground and replaced with fill at overall slopes of 7.3H:1V on pond muds vs out-of-pit dumps, and dams 40m high at 13H:1V to 20H:1V side slopes on Kc clays

3. Pond Mud sliding shear strength learning’s:
 - 9° was correct vs 6° lower bound (other areas of mine with less clay content we now use up to 10° and 11°, therefore need you own index testing and some direct shears)
 - High k_o leading to pre-shearing
 - Clay content, liquid limit, and understanding geological depositional environment were important to determine the overall field strength
Excavated Pitwall Case Studies:

4f. ‘SWQ West Wall’ – Steep Pitwall with No Movement in 2006
4g. ‘Block Slide #22’ – Advancing Ore Pitwall with Movement in 1987
4h. ‘CC1 and CC2’ – Final Pitwall with Movement in 2003
4i. ‘G-Pit’ – Advancing O/B Pitwall with Movement in 2006

- Dump loading can affect pitwall stability and should be designed to be independent of pitwall stability
- Pitwall benches mined at 72°
- PI Clay bench often falls down to 3H:1V to 4H:1V
- Kc Clay bench locally falls down to 1.7H:1V
- Marine Clay Layers (MCL’s) in Marine Oil Sand can be problematic units as they can have a large range of sliding shear strength (pwp design simple piezo level)
 - High sliding strength (19.5°) when deeper and not subject to the effects of glacial drag
 - Low sliding strength (9°) when shallow and subjected to glacial drag or other pre-shearing forces
- Estuarine Clays in Oil Sand were strong but prone to block slides during dragline mining due to the steep dip orientation of local, discontinuous clay layers
- ru always almost reduces due to stress relief or drains down as result of pitwall drainage from original pore water pressure which helps overall stability
4f. ‘SWQ West Wall’ — Steep Final Pitwall with No Movement in 2006

Pitwall Characteristics:
- Overburden removed in 2002, with un-mined ore left in front of the overburden benches (~175m from O/B toe to ore crest left from dragline mining)
- Marine Oil Sand was daylighted and had Marine Oil Sand Clay layers present near top of unit (no clay layers present in deeper Marine Oil Sand)
- No Pond Mud or paleosol present in area
- Overburden “staircase” stepping design and 4 year drainage period increased stability of the pitwall
- Final dragline mining completed in March 2006
- Mining of ore (including bottom Marine Oil Sand) was completed Feb. 2007, giving the ore an additional year of drainage (and gas exsolution) during mining due to the slower mining strategy (smaller shovels/smaller benches) applied to the SWQ
- Aggressive advancing dig-limits for the ore since no evidence of instability was observed and because this was a low-risk area for testing a steeper design

Photo taken Feb 2007
4f. ‘SWQ West Wall’ – Steep Final Pitwall with No Movement in 2006

- No tailings dam or toe berm offset issues
- No impact to infrastructure or O/B Dump
- No ditching or dewatering required at the top
- No contingency stripping required
- No evidence of fissures, fractures, or joints governing performance

- No ore inventory issues
- No ore contamination with Kcw and Kca, Kcb, Kcc
- Evidence of clay layers in the Marine Oil sand (In this case steep design allowed due to very well drained overburden)
- Very little rich feed (<12m at 28°)
- No pond mud/paleosol
- No ore contamination with Kcw and Kca, Kcb, Kcc
- No adverse dips and block slide potential
- No pond mud/coleosol
- No pressurized watersands

Looking North along 46400N
Block Slide #22 – Overview

Pitwall/Movement Characteristics:

- Estuarine Clays in Oil Sand were strong but prone to block slides during dragline mining due to the steep dip orientation of local, discontinuous clay layers as clay drapes over old sand bars and the like.
- Block slide occurred during mining of pitwall.
- Estuarine dip angle ranges from 11° to 15° to steeper angles were problematic.
- This represents a steep geological environment problem for an otherwise strong clay.
4h. ‘CC1 and CC2’ – Final Pitwall with Movement in 2003

Pitwall/Movement Characteristics:
• The final east pitwall in North Mine in the area of the old Coke Cell #1 and #2 moved after some additional ore mining had occurred
• Slip surface extended through a recently constructed earth buttress, through the in-situ Marine Oil Sand below, and along a Marine Clay Layer within the Marine Oil Sand
• The dimensions of the displaced soil were **200m in length by 19m in height by 67m in width** from scarp top crack to daylighting toe at Marine Oil Sand Clay layer
4h. ‘CC1 and CC2’ – Final Pitwall with Movement in 2003, con’t

Lab Analysis on F16 Marine Oil sand Sliding Clay Layers from CC 1&2

Note: Relatively low activity for $\Phi_r = 9^\circ$ due to presence of degraded illite and intercalated layers of smectite within the illite.

<table>
<thead>
<tr>
<th>SAMPLE 1</th>
<th>SAMPLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL = 57</td>
<td>LL = 59</td>
</tr>
<tr>
<td>PL = 23 (NMC Range 1&2 = 20.9% to 28.5%)</td>
<td>PL = 24</td>
</tr>
<tr>
<td>PI = 34</td>
<td>PI = 35</td>
</tr>
<tr>
<td>Clay = 52</td>
<td>Clay = 57</td>
</tr>
<tr>
<td>Silt = 39</td>
<td>Silt = 36</td>
</tr>
<tr>
<td>Sand = 9</td>
<td>Sand = 7</td>
</tr>
<tr>
<td>Activity = 0.67</td>
<td>Activity = 0.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marine Clay Layer Sliding Shear Strength (From Back-Analysis)</th>
<th>Marine Clay Layer & Marine Oil Sand Piezo</th>
<th>Marine Oil sand Cross-bedded Strength</th>
<th>Buttress Shear Strength</th>
<th>Buttress Piezo Condition Assumed</th>
<th>Best Back Analyzed Factor of Safety</th>
<th>Look of Failure Geometry as Compared to Failure in the Field</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi_r = 9^\circ$</td>
<td>304m draining to 298m elev at bench</td>
<td>$c' = 30kPa$ & $\Phi = 54^\circ$</td>
<td>$\Phi = 33^\circ$</td>
<td>$ru = 0.25$</td>
<td>1.00</td>
<td>Similar</td>
<td>Good</td>
</tr>
</tbody>
</table>

* Distance from top of Overburden to sliding clay layers is 19-21m
4h. ‘CC1 and CC2’ – Final Pitwall with Movement in 2003, con’t

Lab Analysis on F16 Marine Oil sand
Sliding Clay Layers from CC 1&2

<table>
<thead>
<tr>
<th>SAMPLE 1</th>
<th>SAMPLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL = 57</td>
<td>LL = 59</td>
</tr>
<tr>
<td>PL = 23</td>
<td>PL = 24</td>
</tr>
<tr>
<td>PI = 34</td>
<td>PI = 35</td>
</tr>
<tr>
<td>Clay = 52</td>
<td>Clay = 57</td>
</tr>
<tr>
<td>Silt = 39</td>
<td>Silt = 36</td>
</tr>
<tr>
<td>Sand = 9</td>
<td>Sand = 7</td>
</tr>
<tr>
<td>Activity = 0.67</td>
<td>Activity = 0.63</td>
</tr>
</tbody>
</table>

NMC Range for samples 1 & 2
= 20.9% to 28.5%

* A less aggressive design would have resulted in more ore being mined
4h. ‘CC1 and CC2’ –
Final Pitwall with Movement in 2003, con’t,

Looking Southwest

Looking Northeast

Photo looking up radial shear at head scarp

Photo looking down through radial shear
Translational slide plane is made up of two weak Marine Oil sand clay layers, each approximately 35mm thick.

Photos show these layers being squeezed out by the weight of the buttress above (Buttress not shown in photos above)
4h. ‘CC1 and CC2’ – Final Pitwall with Movement in 2003, con’t

Lessons Learned:

1. Limited Kca and no Kcb and no Kcc
2. This site had loading from CC 1&2 and then the buttress, and it is close to the Old Beaver Creek Escarpment
3. Marine Clay layers in the O/B analyzed pre-sheared (at Residual Strength) for this maximum 21m O/B height, from topography to Marine Oil Sand Clay Layer(s)
4. The failure resulted in pitwall re-designs that reduced the amount of ore available at that time and increased costs of operating to replace the bonus ore lost. Additional bonus ore loss occurred, as compared to having originally just left additional in-situ Oil Sand in-place. This was due to the need for earthen buttresses which, in this case, required more space to support the slope as they had to be built up from below the failure. This steep wall design was part of trying to obtain more ore than required on what was once a drier slope.
5. The failure showed that for the “actual” field conditions occurring (wetter), the pitwall could not be cut this steeply to obtain all the additional bonus ore hoped for.
6. This failure also indicates that either additional overburden should have been removed (not practical here) or additional Oil Sand left un-mined to shallow the slope to avoid failure

<table>
<thead>
<tr>
<th>Marine Clay Layer Sliding Shear Strength (From Back-Analysis)</th>
<th>Marine Clay Layer & Marine Oil sand Piezo</th>
<th>Marine Oil sand Cross-bedded Strength</th>
<th>Buttress Shear Strength</th>
<th>Buttress Piezo Condition Assumed</th>
<th>Best Back Analyzed Factor of Safety</th>
<th>Look of Failure Geometry as Compared to Failure in the Field</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φr = 9°*</td>
<td>304m draining to 298m elev at bench</td>
<td>c’ = 30kPa & Φ = 54°</td>
<td>Φ = 33°</td>
<td>ru = 0.25</td>
<td>1.00</td>
<td>Similar</td>
<td>Good</td>
</tr>
</tbody>
</table>

* Distance from top of Overburden to sliding clay layers is 19-21m
i. ‘G-Pit’ — Advancing O/B Pitwall with Movement in 2006

Pitwall/Movement Characteristics:
- The west advancing O/B pitwall developed a slip surface on Marine Clay Layers (white dots on graben are 5 gallon pails).
- Pitwall movement in G-Pit area, but not influenced by G-Pit channel/gravels.
- The dimensions of the displaced soil were 240m in length by 33m in height by 120m in width from scarp top crack to daylighting toe at Marine Oil Sand Clay Layer.
4i. ‘G-Pit’ – Advancing O/B Pitwall with Movement in 2006, con’t

1a. Cracking occurs, Graben forms

1b. Radial shearing & lipping occur

2. Flank failures develop

3. Toe heaves after translational slip progresses to rotational slump

June 8-14
June 8-14
June 8-14
June 15-16
4i. ‘G-Pit’ – Advancing O/B Pitwall with Movement in 2006, con’t

June 8-14:
1a. Cracking occurs, Graben forms
1b. Radial shearing & lipping occur
2. Flank failures develop

June 15-16:
3. Toe heaves after translational slip progresses to rotational slump

- Under-mining of Kc1 bench by an average of 7.5m added substantial driver
- Over-mining of Kcw bench by an average of 4.5m reduced toe support
- Daylighting of Marine Oil sand - Estuarine Oil sand geologic contact combined with the over digging Ore1 bench by an average of 5m
4i. ‘G-Pit’ — Advancing O/B Pitwall with Movement in 2006, con’t

Lab Testing Results for Near Shoreface and Channel Marine Clay Layers - Pit wall design had used fully softened peak strength at $\Phi' = 19.5$ degrees because Marine was more than 40m below ground so no expected glacially pre-shearing – back analyses of failed and non-failed slopes confirmed this was correct.

RESULTS:
- Liquid Limit = 63.3%
- Plastic Limit = 22.8%
- Plasticity Index = 41%
- Clay = 67.5%
- Silt = 29.1%
- Sand = 3.4%
- Activity = 0.61%

NMC range = 11.2 to 20.4%
4i. ‘G-Pit’ – Advancing O/B Pitwall with Movement in 2006, con’t

- Stress relief in the clays causes the ru to reduce from normal original ground ru’s, approximately 0.45
- Marine Oil Sand maintains close to original piezometric level with modest ru response to slight drainage

ru values in Kcc=0.28, Kcb=0.21 and Marine Oil Sand units at 308m piezo elevation for instrument installed 200 to 300m away from daylighted highwall

ru values in Kcc=0.02, Kca=0.16 and Marine Oil Sand units at 304m elevation for instrument installed 50 to 100m away from daylighted highwall
4i. ‘G-Pit’ – Advancing O/B Pitwall with Movement in 2006, cont’d

Table: Geotechnical Data

<table>
<thead>
<tr>
<th>Material</th>
<th>Gamma C (kN/m³)</th>
<th>kPa</th>
<th>Phi deg</th>
<th>Piezo Surf.</th>
<th>Ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muskeg</td>
<td>15.7</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PI Clay</td>
<td>20.2</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G-Pit</td>
<td>21.75</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kcc</td>
<td>19.6</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>Kcb</td>
<td>19.6</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>0.21</td>
</tr>
<tr>
<td>Kca</td>
<td>19.6</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>0.16</td>
</tr>
<tr>
<td>Kcw</td>
<td>20.2</td>
<td>20</td>
<td>33</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Marine</td>
<td>21.2</td>
<td>30</td>
<td>54</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Marine Sliding</td>
<td>21.2</td>
<td>0</td>
<td>19.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Estuarine</td>
<td>(Infinitely Strong)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Marine Sliding layer was at fully-softened peak strength (FS seems correct given that the wall failed shortly after being mined).
- Though this does not match the look, the 1.05 FS does match the look in 2D and 3D and it is suspected that there is a defect at the 1.05 location (partial joint) that makes the 1.05 lower than 0.995 in the field.

Analysis:

- FS = 0.9995
- 1.05 at back of actual graben
- Marine Sliding @ Fully-Softened Peak Strength (0 kPa & 19.5°)
- Marine Oilsand Piezo Elev (PS 1) = 303m to 306m
- r_y values for Kc-clays range from zero to values gained from instrumentation

Diagram:

- Shows the comparison of measured and predicted values for the pitwall stability analysis.
4i. ‘G-Pit’ — Advancing O/B Pitwall with Movement in 2006, con’t (Non-failed slope is SN-SN’, and Failed Slope is SF-SF’)

Factors of Safety vs Marine Clay Layer Shear Strength

Graph shows pitwall to be under these conditions:
- Marine Sliding @ Fully-Softened Peak Strength (0kPa & 19.5°)
- Marine Oilsand Piezo Elev (PS 1) = 306.25m
- Zero r_d in Overburden (Suction)

Jointed Kc-clay condition
Case 4d: (0kPa & 20° in Kc, 0kPa & 19.5° in MCL)
(Possible but unlikely: Marine Oilsand has to be dry, Kc-clays have to be in suction)
Case 4g: (0kPa & 19.5° in Kc-clay, 0kPa & 19.5° in MCL @ full ru and 306m for Marine piezo elevation

Peak strength condition (50kPa & 19.5°)
4i. ‘G-Pit’ – Advancing O/B Pitwall with Movement in 2006, con’t

Lessons Learned

1. **Marine Clay Layer** in Marine Oil Sand in G-Pit area at fully-softened peak strength $c' = 0\text{kPa} \& \Phi' = 19.5^\circ$

2. Once failed, **fully-softened peak strength goes to residual strength**

3. SF-SF’ the failed section would not have failed if mined exactly to design dig limits, though FS would still have only been 1.19

4. Back scarp of failure was at 3.14H:1V (post-failure) with some cracking behind (3.2H:1V) which relates to residual strength. **Had the OB1 bench (the mining bench above) been within 3.2H:1V of this, it would have resulted in a substantially larger failure.**

5. Some areas to the north may be at full peak strength

6. Large failures may also occur if wetter, fully softened, areas are encountered during mining

7. In North Mine, Operations has the potential to encounter wide range of pore water pressure conditions

8. Pitwall between channel limbs can be analyzed to be jointed though field observations do not match GSlope modeling and photos do not show any continuous joints

9. Joints minor cross-bedded weaknesses in geology or water content, if present or minor, will control failure location so still did not input backscarp let program do that.

10. **Kc-clays** were analyzed at cross-bedded shear strengths and do not seem to be a factor in this failure mode – **Kc clays had low measured ru’s by pit wall**

1. **Problem 1** ---- Under-mined Kc1 bench to allow adequate room for haul road width

2. **Problem 2** ---- Over-mined Kcw bench to allow adequate room for 2nd running surface
5. Retaining Wall/MSE Wall Construction Considerations for Marine Clays, Re-design

Case Studies:
5a. 2a/2c Conveyor Retaining Wall Re-Design, 1988
5b. MSE Wall with Shear Key for MLMR, 2011

2a/2c Conveyor Retaining Wall just prior to demolition in 2012
5a. 2a/2c Conveyor Retaining Wall Re-Design, 1988, con’t

Approach for re-design and monitoring of a retaining wall installed combined in situ / O/B fill areas with Marine Clay Layers

Design and monitoring critical since:
- Oil and Gas Pipelines existed near crest of slope
- Ore conveyors existed near toe of slope
- Marine Clay Layers existed near surface
5a. 2a/2c Conveyor Retaining Wall Re-Design, 1988, con’t

Slope Inclinometers (SI’s) and Pneumatic Piezometers (PN’s) were installed in and around the soldier-pile wall to read soil movements and pore water pressure responses

• SI’s read a maximum velocity of 0.3mm/day
• Majority of movement is suspected to be stress-relief from the excavation
• No significant piezometric elevation or ru changes occurred during or after construction
Evidence of pre-shearing in some clay samples required that residual shear strength parameters be used in the analysis due to near shore marine sand content and frequent sand filled burrows. Cohesion on residual due to frequently sand in-filled burrows through the clay and the cutting action of the sand grains into clay along a shear plane.

Establishing an instrumentation program and remedial stabilization plan allowed for a less conservative design strength to be used. Did not use zero cohesion in the design.

Three (3) design strength in Marine Clays Layers in Marine Oil Sand for the Case Studies Presented. Have used:
- $c' = 0 \text{kPa}, \Phi' = 9^\circ, r_u =$ piezo level (when pre-sheared)
- $c' = 0 \text{kPa}, \Phi' = 19.5^\circ, r_u =$ piezo level (not pre-sheared)
- $c' = 10 \text{kPa}, \Phi' = 9^\circ, r_u =$ piezo level (sandier, lower LL)
5b. MSE Wall with Shear Key for MLMR, 2011 design

Building the correct geologic model is important

• Weak layers observed in core samples have to be built into the model
• Stronger cross-bedded layers
• Importance of inspection of core for low density, highest plastic zones, with emphasis on per-shearing
• From experience, only one to two move, but could be any of the one to two, depending on the shear key design, but maximum shown is two weak layers at a time i.e. only two move at a time, not all four at once. Displacement programs will move all four if you allow the model to just run so this practical experience is required to be input.
• Can get shear modulus of the material from SI’s measuring cumulative movement over the thickness of stronger clay below the lowest moving sliding layer, if plain strain is assumed.
5b. MSE Wall with Shear Key for MLMR, 2011 design con’t

<table>
<thead>
<tr>
<th>Name</th>
<th>Unit Weight</th>
<th>Cohesion</th>
<th>Phi</th>
<th>Ru</th>
<th>Include in PWP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
<td>19.1 kN/m²</td>
<td>0 kPa</td>
<td>33°</td>
<td>0.15</td>
<td>Yes</td>
</tr>
<tr>
<td>PUG</td>
<td>20 kN/m²</td>
<td>0 kPa</td>
<td>25°</td>
<td>0.3</td>
<td>Yes</td>
</tr>
<tr>
<td>Loaded Cross Bedded Kc (Ru=0.65)</td>
<td>20 kN/m²</td>
<td>25 kPa</td>
<td>20°</td>
<td>0.65</td>
<td>Yes</td>
</tr>
<tr>
<td>Loaded Weak Layer (Ru=0.6)</td>
<td>20 kN/m²</td>
<td>0 kPa</td>
<td>8°</td>
<td>0.45</td>
<td>Include in PWP: Yes</td>
</tr>
<tr>
<td>Loaded Weak Layer (Ru=0.65)</td>
<td>20 kN/m²</td>
<td>0 kPa</td>
<td>8°</td>
<td>0.55</td>
<td>Include in PWP: Yes</td>
</tr>
<tr>
<td>Loaded Weak Layer (Ru=0.65)</td>
<td>20 kN/m²</td>
<td>0 kPa</td>
<td>8°</td>
<td>0.65</td>
<td>Include in PWP: Yes</td>
</tr>
<tr>
<td>Loaded Weak Layer (Ru=0.7)</td>
<td>20 kN/m²</td>
<td>0 kPa</td>
<td>8°</td>
<td>0.7</td>
<td>Include in PWP: Yes</td>
</tr>
<tr>
<td>Loaded Cross Bedded Kc (Ru=0.3)</td>
<td>20 kN/m²</td>
<td>25 kPa</td>
<td>20°</td>
<td>0.3</td>
<td>Include in PWP: Yes</td>
</tr>
<tr>
<td>Loaded Cross Bedded Kc (Ru=0.55)</td>
<td>20 kN/m²</td>
<td>25 kPa</td>
<td>20°</td>
<td>0.55</td>
<td>Include in PWP: Yes</td>
</tr>
<tr>
<td>Loaded Cross Bedded Kc (Ru=0.6)</td>
<td>20 kN/m²</td>
<td>25 kPa</td>
<td>20°</td>
<td>0.6</td>
<td>Include in PWP: Yes</td>
</tr>
<tr>
<td>Loaded Cross Bedded Kc (Ru=0.7)</td>
<td>20 kN/m²</td>
<td>25 kPa</td>
<td>20°</td>
<td>0.7</td>
<td>Include in PWP: Yes</td>
</tr>
</tbody>
</table>

Slope with Shear Key in area North of MSE wall:

Displays how differ ru’s for different loading conditions are considered in a stability analysis model.

Weak sliding layer also varies in ru (more sensitive than cross-bedded Kc above)

MLMR MSE Wall – ru Values for Stability Analysis
5b. MSE Wall with Shear Key for MLMR, 2011 design, con’t

FLAC Analysis used to assess MSE wall with shear key:

- Must know how to introduce weak layers observed in core samples (only allowed two on at a time in FLAC)
- Must model all clay layers (strong and weak)
- Must have correct cross-bedded strengths, sliding strengths, and ru values for soil/loading condition

FLAC Analysis Output for Horizontal Displacements

Slope W Analysis Output

Unloaded sliding clay layers

Loaded sliding clay layers

MLMR MSE Wall – Slope W and FLAC Analysis
5b. MSE Wall with Shear Key for MLMR, 2011 design, con’t

Note: 1) For 20m high MSE Wall and 15m deep shear key and 80m long steel strips where the shear strains are and that they are not breaking up through the toe.

2) Factor of Safety of 1.3 had to be approved for project. Combination of limit equilibrium slope stability and FLAC displacements with good data and field experience along with contingencies mitigated risk of lower FS.
Conclusions
When choosing design ru and shear strength values:

1. Must know geological history, energy of depositional environment, any pre-shearing.
2. Must know recent history of excavations & backfilling.
3. Must know the extent of the planned loading and how much the ru will rise (or lower), and need separate ru’s for loaded, non-loaded, unloaded and re-loaded areas.
4. Need to build the correct model. For stability analyses modeling need to:
 • Draw slip surfaces & model sliding layers and hard layers to represent real failure conditions and pick strengths and variable ru’s (pwp) along those slip surfaces to be analyzed one at a time.
 • Have correct strength (cross-bedded vs sliding, peak vs residual) and ru parameters for material loading, or unloading, or unloading and re-loading conditions. Use correct lab test and samples for that layer. Test results rarely include strain softening effects so careful of statistics on peak testing.
5. Need to evaluate parameters of each slip surface for field effects and design depth
6. Need real data from other projects and interpolations must be for the similar geologic conditions and conditions of loading/unloading and similar heights.
7. The same ru from a lower loading height for a higher loading height only works if the clay is not showing large changes in ru. Shallow PI and Deep Kca vs Shallow Kcc & Shallow Kca.
8. Often need to understand displacements (from FLAC program) not just Factor of Safety (from limit equilibrium slope stability programs with large experience base), when designing slopes below FS=1.3, or for civil/soil interactions (like retaining walls & MSE walls)
Syncrude Geotechnical Papers from 1985 to 2008 on many subjects related to tailings and oil sands mining as follows:

- **2008**

- **2001**
Sponsors For Cross Canada Lecture Tour, Spring 2013

JD MOLLARD AND ASSOCIATES (2010) LIMITED

BGC

ConeTec

Golder Associates
Sponsors For Cross Canada Lecture Tour, Spring 2013

Organization:

The Canadian Geotechnical Society
La Société canadienne de géotechnique

Funding:

The Canadian Foundation for Geotechnique
La Fondation canadienne de géotechnique